PROP Profile of Poisson Geometry

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poisson Geometry

This paper is a survey of Poisson geometry, with an emphasis on global questions and the theory of Poisson Lie groups and groupoids.

متن کامل

4 PROP profile of deformation quantization ∗

Using language of dg PROPs we give a new short proof of existence of star products on (formal) germs of Poisson manifolds.

متن کامل

Poisson Modules and Generalized Geometry

Generalized complex structures were introduced as a common format for discussing both symplectic and complex manifolds, but the most interesting examples are hybrid objects – part symplectic and part complex. One such class of examples consists of holomorphic Poisson surfaces, but in [5],[6] Cavalcanti and Gualtieri also construct generalized complex 4-manifolds with similar features which are ...

متن کامل

Picard Groups in Poisson Geometry

We study isomorphism classes of symplectic dual pairs P ← S → P , where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P , these Morita self-equivalences of P form a group Pic(P ) under a natural “tensor product” operation. Variants of this construction are also studied, fo...

متن کامل

Graded geometry and Poisson reduction

The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2005

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-005-1385-7